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ABSTRACT 

We consider network optimization problems in which the weights of the edges are random variables. We 

develop conditions on the combinatorial structure of the problem which guarantee that the objective function value is 

a fust passage time in an appropriately constructed Markov process. The arc weights must be exponentially 

distributed, the method of solution of the deterministic problem must be greedy in a general sense, and the 

accumulation of objective function value during the greedy procedure must occur at a constant rate. We call these 

structures constant access systems after the third property. Examples of constant access systems include the shortest 

path system, the longest path system , time until disconnection in a network of failing components, and some 

bottleneck optimization problems. For each system, we give the distribution of the objective fun ction, the 

distribution of the solution of the problem, and the probability that a given arc is a member of the optimal solution. 

\Ve also provide easily implementable formulae for the moments of these quantities. 





1.0 INTRODUCTION 

In this paper, we unify a set of results concerning the performance of networks with random arc weights. 

Finding the distributions of the shortest path, longest path, and maximum flow were provided in Kulkami [l 987], 

Kulkarni and Adlakha[l986], and Kulkarni [ 1987], where each problem was considered on a network with 

independent, exponentially distributed arc weights. In each case, a Markov process was constructed for which the 

first passage time to a set of states was the optimal objective function value of the problem. Thus, the distribution, 

moments, etc., of the optimal objective function value could be found using standard Markov process technique. 

The same methodology was applied to the nonplanar maximum flow problem and to Prim's spanning tree 

problem, neither attempt being successful. We could not construct a Markov process with ftrst passage time equal 

to the objective function value for either problem, though these problems seem closely related to the problems for 

.which the method was successful. This left the investigators with the problem of determining which characteristics 

of these optimization problems was essential in order to ensure that a Markov process solution exists. 

This paper provides a general framework for randomly weighted network optimization problems which have 
I 

I 

!optimal objective function values are given by absorption times of some Markov process. The restrictions which 

f escribe this class are that the method of solution is essentially greedy, and that the underlying combinatorial 

rtructure have two properties which we call the constant access and interval properties. For any combinatorial 

r
ptimization problem with these properties, we give the construction of the Markov process required. For each 

)ystem, we give the distribution of the objective function, the distribution of the solution of the problem, and the 

~obability that a given arc is a memb;r of the optimal solution. We also provide easily implementable formulae 

for the moments of these quantities. All of these calculations exploit the uppertriangularity of the generator matrix 

:>f the constructed Markov process. 

Awareness of a general class of constant access systems allows us to consider other combinatorial optimization 

~roblems and to determine if they may be extended to the randomly weighted case using Markov processes. By 

Jinpointing the required properties for successful application of Markov processes to the objective function 

r stribution problem, we can narrow the search for problems for which we expect success. Stated differently, we 

1ave shown that the mechanism of transition in Markov processes is identical to the mechanism of access of the 

~dy algorithm. 
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Let E be a set of elements, typically the edges of a graph, and let B be a set of strings made up of elements in 

E. For each Y e B, let W(Y) be a random variable corresponding to the objective function value of Y. We are 

interested in computing 

F(Y , t) = P[W(Y) ~ t, W(Y) ~ W(Y ') for all Y' e B], 

the probability that Y is the minimum weight element of B and its value does not exceed t. The marginals ofF 

may be used to fmd the distribution of the optimal objective function value, criticality indices for each arc, and other 

interesting network performance measures. In Dijkstra's shortest path algorithm (forward looking version), B is the 

set of states which have the destination permanently labeled. If Y is one such state, F(Y, t) is the probability that Y 

is the terminating state of the algorithm and the shortest path has length not exceeding t. If we aggregate all of the 

states which give the same shortest path, we can sum the probabilities to find the probability that a given path is 

shortest and its length does not exceed t, and we can lett~ oo to find the probability that a given path is shortest. 

In this work, we will identify a class of problems for which a stochastic process {X(t), t ~ 0} may be 

constructed such that each Y e B is an absorbing state of { X(t), t ~ 0}. The fundamental property of { X(t)} is 

that F(Y, t) is the distribution of the time of {X(t)} 's first passage to Y. Characteristics of this class of 

combinatorial problems include optimality of the greedy algorithm for the underlying deterministic combinatorial 

problem, as well as tw~ properties called the interval and constant access properties. The stochastic process 

{X(t), t ~ 0} is shown to be a generalized semi-Markov process (GSMP). When the arc weights are exponentially 

distributed and independent, {X(t), t ~ 0} is a Markov process. 

In Section 2 we outline the combinatorial structures which we will treat. Section 3 contains the combinatorial 

results required to pursue the case of random weights. Section 4 contains the analysis of stochastic combinatorial 

problems, including the conditions under which the stochastic system is a Markov process. We use the Markov 

process to derive distributions of interest and we include some results on computational efficiency. In Section 5 we 

detail some important examples of constant access systems. While some of these systems have been investigated ad 

hoc in [1987], [1986], and [1987], several of these systems are new to the literature. They were uncovered as 

constant access systems as a result of the construction of the general system. Section 6 contains our conclusions 

and some comments concerning extensions of this work. 
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2.0 BAS I C COi\llll :"lA T O RICS 

In this section , we establish the tenninology and notation necessary to describe the systems we study. We 

define the minimizing greedy algorithm and give Dijkstra's shonest path system as an example. 

Let E be a set which we refer to as the ground set, and let C be a set of simple strings (ordered sets with no 

repeats) of elements in E. Let X E ~. then the i-th element in the string X is denoted Xi , and the length of the 

string is given by I X I. We will denote the operation of concatenation as "·". Thus if X= (x
1

, x
2

, •.•• xk), 

a E E, and Y = (y 1 , y2 , .•. , ym), then X·a = (x 1 , x2 , ••• , xlr. ' a ), and X·Y = (x
1

, x
2

, • .. , xlr., y
1

, y
2

, ... , ym ). 

For the string X = (x
1 
,x

2
, .•• ,xlr..), the string made up of the firs t i elements, i::;; k, will be denoted Xj, 

Xi= (x1, x2, ••• ,xi), and is called a prefLX of X. We will use set operations n , u, c , and e on the stri ngs of ~ to 

indicate the operation perfonned on the underlying set of the string. 

In this work, we will deal with string systems have the following propenies: 

i) <P E C; 
ii) X E C implies that Y E C for all Y C X. 

The set C is called the set of feasible strings. 

We often wish to refer to the set of elements of E which we can feasibly append to the string X E C. denoted as 

A(X). This set is called the set of accessible elements of X and is formally given by A(X) = 

{x e E: X·x e CJ. When an element of A(X) is appended to X, it is said to have been accessed . The set B is 

defined as B = {X E C: A(X) = 0}, and is called the set of basic strings, followin g the tenninology used in matroid 

theory. An access chain to X e C. I X I = k, is the sequence of feasible strings X0 = <j> , X1, X2, ••• , Xlr. = X. Note 

thatforanyXe C. lxl =k, {Ye B:_Xisonachainofaccess toY}={Ye B :Ylr.=~}. 

2.1 Clutter Intersection Systems 

Let v:E ~ 9\+ be a nonnegative weight function on the set E. For each Y E B, define d*(Y) to be a known 

subset of {Y} called the determining structure of Y. Let w be the objective function on B given by 

thus, each basic element's weight is linear in its detennining structure. Note that if d* (Y) equals the underlying set 

of Y, then w is the linear objective function common to matroid analysis. 

In our development, we will make the following two assumptions concerning detenn ining structures of basic 

elements: 
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i) U Ye B d*(I') = E 

ii) d*(Y) .;t d* (Z) for any Y, Z e B, Y-:~; Z. 

Thus the set {d*(Y): Y e B} is a clutter on the set E, see Edmonds and Fulkerson [1970]. Assumption i 

guarantees that every member of E belongs to at least one determining structure. Assumption ii guarantees that for 

each determining structure of a basic element, there exists a weight function for which that determining structure is 

of minimum weight. In a two terminal undirected network in which each arc is on a path between the terminals, the 

set of paths is a clutter on the set of arcs in a connected network, as is the set of (minimal) cutsets. 

The set { d* (Y): Y e B} fully describes the objective function w for basic strings of C. however w(X) for X e ~ 

- B is still left undetermined. We extend the notion of determining structures to nonbasic strings. Let X be a 

non basic element of ~. Define r(X) as r(X) = { d* (Y): X C Y, Y e B}. Thus, r(X) is the set of determining 

structures of basic strings which can terminate any chain of access containing X. Let 

(2.1) 

and let d* (X") = d* (Y) n X for the maximizing Y e r(X). Note that d* (X) implicitly depends on the weight function 

v. The triple (E, ~. d*) will denote a system with ground set E, feasible strings z, and determining structure function 

Example 1. (A Shortest Path Example) 

Consider the graph G = (N, E) in Figure 1. 

Figure 1. 

Let E be the set of arcs . Construct C so that X e C if X is the arc set of a directed tree rooted at node 1. Further 

restrict ~ by requiring that any string containing an arc incident with node 4 is basic. 
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E =(a, b, c, d, e}, and~=(<!>. a, b, ab, ac, ad, ba, be, abd, abe, acd, ace, bad, bae}, B ={ad, be, abd, abe, acd . 

ace, bad, bae}. Note that adb e ~because ad an arc incident with node 4, thus A(ad) = 0. For each Y e n, let us 

define the determining structure of Y as the (1, 4) directed path contained in Y. Thus. 

d*(ad) = (a, d} 

d*(be) = (b, e} 

d* (abd) = {a, d} 

d* (abe)= (b, e 1 

* d (acd) =(a, d} 

* d (ace)= (a, c, e} 

d*(bad) = {a, d} 

d* (bae) = fb, e l. 

Note that each element of E is contained in at least one determining structure. Also note that no determin ing 

structure is strictly included in another. Thus (d*(Y): Y E B } is indeed a clutter on E. Note also that several 

elements of z have the same determining structure, thus their objective function values are equal. Without 

knowledge of v, we cannot say what the determining structure of nonbasic strings are. For instance, the determining 

structure of the string ab is the longer of the arcs a and b. 

2.2 Greedy Minimizing Algorithm 

Let X E ~- Define the greedy generator G as the function G(X) = argminxeA(X) w(X·x). A greedy chain of 

access is a chain of access Xo = 0, X 1, X2, ••• , Xk. such that Xi+ I =Xi· G(X). The greedily accessed basic string will 

be denoted with a subscript "G". A greedy system has the property that for any nonnegative weight function v, 

w(Y c)~ w(Y) for allY E B. 

Example 2. (The Greedy System) 

Recall our network example for Figure 1. Let the weight ftu1ction v be given by the following table. 

x: a b c d e 

v(x): 2 4 5 4 

Let OUT(n) = (x e E: tail(x) = n} and IN(n) = (x e E: head(x) = n} for each n E N. The following algorithm is the 

greedy algorithm for this system 

initialize: 

X0 = 0 

A(XoJ = OUF(s) 

w(XJ = 0 
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for each x E E, r(x) = v(x) 

i=O 

While /x. n IN(t) I = 0 
' 

w(Xi+I) = w(X) + r(xi+I ) 

A(X. I) = A(X)- {x . I} - {x E E: no (tail(x), t) directed path exists in (N, E - X . I) u OUT(head(x . 
1
))} 

I+ I l+ I + I+ 

i =i+ l 

endwhile 

The set of feasible strings z is the set of strings which this algorithm generates for all possible nonnegative length 

functions v. The following table gives the outcome of the algorithm for the network above. 

XE A(X.) w(X
1 

• x) 

0 0 0 0 a 2 

b 4 

a {a} 2 b 4 

c 7 

d 6 

2 ab {b} 4 d 6 

e 5 

3 abe (b. e l 5 

The example ends with X
3 

= XG = abe. • 

The reader should recognize this algorithm as Dijkstra's shortest path algorithm. In fact, several of our greedy 

systems are recasts of well-known network optimization schemes, the hereditary family (E, C) being set of sample 

paths for the algorithm. While this representation is inefficient for the deterministic problem, it is vital for the 

extension to the case of random weights. 

3.0 CONSTANT ACCESS AND INTERVAL PROPERTIES 

We must funher restrict our optimization scheme in order to guarantee memorylessness of the random weighted 

extension. Ideally, further restriction of the deterministic system should be independent of v except where it impacts 
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d*, and locally verifiable, having to do with the relationship of X to A(X). The following two properties meet this 

ideal and guarantee memorylessness to randomly weighted systems. 

3.1 Interval Property 
-

The following property, the interval property, is an extension of the interval property given by Korte' and 

Lovasz [1984] in their description of a set of greedoids called alternative precedence structure (APS) greedoids. 

Let (E, ~)be a hereditary language. Let X, Y e ~such that X C Y. (E, ~) has the intern! property if for 

all Z e ~with X C Z C Y, we have 

[A(X) n A(Y)] c A(Z). 

Thus, during construction of a chain of access, if x e E becomes accessible at some stage, call it j(xJ. x remains 

accessible until either it is accessed or removed from the set of accessible elements. Once an element is removed 

from the set of accessible elements, it will never be accessible again. 

Example 3. 

Returning to the ongoing example, consider arc d. At the onset, d is not accessible. Consider the string abe e 

B. For this string, d is accessible once a has been accessed, thus j(d) = 1. d remains accessible during stages 2 and 

3. Once e is appended to ab, d is no longer accessible. This property can be verified for all elements of E for each 

member of B. 

-3.2 Constant Access Property 

The system (E, ~. d*) has the constant access property if for each X e ~- B and each Y e B with X C 

Y, 

I A(X) n d*(Y) I = 1. 

Equivalently, (E, ~. d*) has the constant access property if for all x e A(X), x =X n P for some P e r(X). In a 

subsequent investigation, we will generalize this property to allow I A(X) n d* (Y) I = n(X), where n(X) is a known 

constant depending only on X. 
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Example 4. 

In our ongoing example, note that for each X E ~ - B, A (X) is contained in a (1, 4) cutset and consists of the 

arcs pointing toward node 4 (a uniformly directed cutset, UDC), resulting in I A(X) n P I = 1 for all sets p which 

are (1, 4) directed paths, (Sigal, et. al. [1~80]). 

Greedy systems which have the constant access and interval properties, are greedy systems, and have 

determining structures which form a clutter on the ground set are called constant access systems. 

3.3 Systems with the Constant Access Property 

Henceforth, (E, ~. d*) will be assumed to be a constant access system. We will now present a set of results 

which give a formula for the cost of constructing the greedy chain of access. This formula is the key to the proof of 

memorylessness in the next section, as well as enhancing our understanding of deterministic greedy access systems. 

For any X E ~. X = (x1, x2, ••. , x ), let j(x.) = min {j: Xi E A(X.)} for each i = 1, 2, ... , n. Thus, j(x.) is the 
n I J I 

first stage for which xi is accessible. 

Lemma 1. Let Y E B, Y = (yl' y2, ... , ym). Let i and k be such that i::; k::; m. Then yi E d* (Y k) implies that 

Proof. Consider the stage j(yi)- 1, the stage immediately preceding the stage when y. becomes accessible. By the 
I 

constant access property, there exists unique x E d* (Y k) in the set A(Yj<YJ-)· If Yi E A(Yj<Yi>) n d* (Y k), then x E 

A(Yj<Yi>) because only one member of d* (Y k) may be in A(Yj<Yi>). Thus xis in A(Yj<YiH)' x is not in A(Yj<Yi>), and x 

E d * (Y k) hence x E Y k. The interval prqperty guarantees that x = yj<Yir • · 

Upon reflection, lemma 1 gives good insight into the workings of access systems with the constant access and 

interval properties. It states that once one member of the determining structure is identified, the members of the 

determining structure accessed before it are known automatically. In the next lemma, we establish that if an element 

X is generated greedily, the last element of X is a member of d(X). 

Lemma 2. Let (E, ~. d*) be a constant access system. Let X be a greedily generated string, I X I = n. Then for 

each X E A(X), X E d*(X·x). 

Proof. See appendix A. 

Lemma 2 is based on some observations about the greedy generator. Consider the possibility that x e d* (X · 

x). In this case w(X) = w(X · x) and accessing xis "free." Two possibilities exist. Possibly x has been accessible 
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before stage m, in which case we would have accessed this low cost element before this stage. The other poss ibili ty 

is that x was not accessible before stage m. In this case, j(x) = m. This implies that x and Xm are both members of 

some element K of r(X · x) and 

Lz.eK:r-.(X . x) v(z) = v(x) + L zeKrVC v(z) 

so accessing xis certainly not costless. Hence we derive a contradiction in either case. 

Thus, the greedily generated elements X E Care closed in the sense that feasibly adding any element of E - X 

increases the objective function value of the string. 

Lemma 3. Let Xi E C be generated by the greedy generator. Let 'tk = w(Xk) -w(~_1 ), k = 1, 2, ... , i. For each z 

E A(X.), let C = v(z)- ['t.c )+1 + 't.c) 2 + ... + 't.]. Then 
l Z JZ JZ+ I 

Proof. Consider z E A(X). Let J E r(Xi . z) such that 

LxeJ~u{z)) v(x) ~ ~ef/"'(Xju{z}) v(x) 

(3.1) 

for all J' E r(Xi · z), thus J n (Xi u {z}) = d* (Xi · z). By lemma 2, we know that z e J, and by the constant access 

property {Xj(z)+l + Xj(z)+2 + ... +Xi} n d*(X · z) = 0. Thus w(Xi · z) = w(Xj(z)) + v(z). Thus, the defmition of 

the -r's gives us the result 

w(Xi · z)- w(Xi) = v(z)- ['tj(z)+l + 'tj(z)+2 + ··· + 'ti]· (3.2) 

Corollary 4. G(Xi) = argminzeACXil Cz. 

Proof. A result of lemma 3 and the defmition of the greedy algorithm. • 

Lemma 3 enables us to directly compare the incremental costs of the elements appendable at a given stage. In 

the sequel, we will consider the case where ( v(x): x E E} is a set of independent, exponentially distributed random 

variables. We will use lemma 3 to show that at each stage, the costs C are memoryless with respect to the 
z 

elements already accessed, and thus the incremental costs of access remain independent and exponentially distributed. 

Example S. 

Let us return again to our ongoing example, the weights of the arcs given by 

x: a b c d e 

v(x): 2 4 4 
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Consider the string X = ac, which the greedily generated string of length 2. A(ac) = { d, e}, with j(d) = 1 and j(e) = 2. 

By lemma 2, de d*(acd) and e e d(ace). By lemma 1 we identify d*(acd) as {d, xj(d)' ... } = {d, a}, and d*(ace) ={e. 

xj(e)' ... } = {e, c, a}, both sets are arc sets of (1, 4) directed paths. By lemma 3, w(acd)- w(ac) = Cd = v(d)- t
2 

= v(d) 

- [w(ac)- w(a)] = v(d)- [v(c)- 0] = 3. -w(ace)- w(ac) = ce = v(e)- 0 = 1. 

Y G =ace, as predicted by corollary 4. • 

4.0 STOCHASTIC CONSTANT ACCESS SYSTEMS 

We are primarily interested in models of system behavior in which the critical measure of performance is a sum 

of the weights of a determining structure of a basic element In the last section, we have developed characteristics of 

these types of optimization problems when the weight function is a known function v:E ~ 9\+. We now wish to 

consider situations in which {V(x): x e E} is a set of random weights of ground set elements, however, we wish to 

solve the minimum weight basic element problem using greedy minimization which implies definite knowledge of 

the incremental costs of adding various elements of the accessible set at each stage. We thus propose the following 

scenario: at the time that the optimization is to take place, the ground set weights (arc lengths in our examples) are 

known. However, prior to any realization of the problem being encountered, {V(x) : x e E} is a set of random 

weights for which we have distributional knowledge. Thus, from a strategic point of view, the constant access 

system being considered may be analyzed as a system with stochastic performance. Tactically, the system is seen 

as a deterministic greedy problem. 

Accordingly, we will now consider the case of optimization in the context of uncertainty. Let {V(x): x e E} 

be a set of nonnegative random weights, and let {W(X) : X e CJ be the associated set of stochastic determining 

structure objective function values. Thus, we wish to derive the joint distribution function F given by 

F(Y, t) = P[W(Y) ~ t, W(Y) ~ W(Y') for allY' e B] 

for each Y e B. With Fin hand, the derivation of 

p(Y) =lim t-+_F(Y, t); 

F(t) = LyeB F(Y, t); 

which represent the probability a basic element Y is optimal and the distribution of the minimum weight basic 

element, resp., are direct We will also demonstrate some straightforward methods for deriving performance measure 
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distributions, expected values, and conditional expected values, all of which exploit the propenies of the ~~brkov 

process we develop. 

4.1 Sample raths of the Greedy Minimizing Algorithm 

As mentioned in the introduction, we will model the execution of the greedy algorithm as a stochastic process, 

a novelty in the literature of stochastic combinatorial optimization. Let {X(t), t ~ 0) be a time homogeneous 

stochastic process on state space C with transition epoches S0 = 0, S1, S2 , ... ,and intertransition times 't . = S.- S . 
1 1 1-l 

{X(t), t ~ 0) has the following qualities: 

i) P[X(O) = 0] = 1; 

ii) P[X(t + s) = Y I X(s) = Y] = 1 for allY e B, s,t ~ 0; 

iii) P[X(Sn) = X · X, 'tn = t I X(Sn_1) = X] 

= P[W(X·x)- W(X) ~ W(X·y)- W(X) for ally e A(X), W(X·x)- W(X) = t]. 

Hence, (X(t), t ~ 0) starts in 0, and is absorbed in any element of B. Furthermore, the probability of making 

transition from X to X · x occurs after W(X · x) - W(X) time units, and then only if transition to X · y for some 

other y e A(X) hasn't already occurred. By virtue of i- iii, we may extend the definition ofF to include nonbasic 

elements of C: 

F(X, t) = P[W(X) ~ W(X') for all X E c. I X' I ~ I X I' W(X) ~ n. 

Thus, F(X, t) is the probability that X is on the (random) greedy sequence and that its objective function value is 

less than or equal to t Since the length of X increases at each stage, we may guarantee that the transition matrix of 

the underlying discrete process of X(t) is uppertriangular by assuming that the elements are listed in increasing 

length. 

Note that without any further distributional assumptions, {X(t), t ~ 0} is a generalized semi-Markov process 

(GSMP), a."ld that imposition of the interval propeny on (E, C) restricts (X(t), t ~ 0) to the set of noninteruptive 

GS:MPs, see Schassberger [1976]. However, results concerning GSMPs are almost exclusively concerned with 

steady state behavior of the system. Because the characteristics of (X(t), t ~ 0) we seek concern transient behavior, 
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GSMP theory is of little help in the current context. Research into characteristics of GS!vlPs with uppertriangular 

transition matrices may be motivated by the systems discussed in this paper. 

4.2 Exponentially Distributed Weights 

Let {V(x): x e E} be a set of mutually independent, exponentially distributed random variables with rates {)l(x): x 

E E}. Recall that j(y) =min {j: y E A(Y.)}. 
J 

Lemma 5. Let Y e ~. I Y I = n. Let y e A(Y). Then 

P[V(y) > t + tj(y)+l + 'tj(y)+2 + ... + t 0 I X(S) = Yi, 'tj(y)+l, 'tj(y)+2, ... , 't0 ] 

= P[V(y) > t] = e -Jl(y)t_ 

Furthermore, given X(S) = Yi, tj(y)+I, tj(y)+2, ••• , ti, the set of random variables 

{V(y)- tj(y)+I- tj(y)+2 - ... - ti: y e A(Y)} is a set of mutually independent random variables. 

(4.1) 

Proof. We induct on i. For i = 0, the proposition simplifies to the assumption of independent, exponentially 

distributed weights, j(x) = 0 for all x e A(0). 

Consider the lemma statement as an induction hypothesis true for 0, 1, ... , i. For~ y e A(Y), equation 

4.1 is true for j(y) + 1, ... , i. Note that the condition X(S.) = Y implies that for every y e A(Y), V(y) > t.< ) 
1 

-
1 J y + 

tj(y)+2 - ... - ti. Thus 

ti =min {V(y) -tj(y)+l-t(y)+2 - .•. -'t
0

: y E A(Y)}- min {V(y): y e A(Y)J 

is the minimum of a set of mutually independent, exponentially distributed random variables, which implies that ti+I 

- exp Jl(Y), where 

(4.2) 

By invoking the strong memory less property, we have { V(y) - 'tj(y)+l - 'tj(y)+2 - ••• - ti- ti+l: y e A(Y) n 

A(Yi+l)} is a set of independent, exponentially distributed random variables because A(Y) is assumed to be a set of 

independent random variables. Since {y: j(y) = i + 1} are assumed to be independent of the history of {X(t)} to this 

point, we have established that {V(y) - tj(x)+l - tcx)+2 - ••• - ti- ti+l: y e A(Yi+l)} is a set of independent, 

exponentially distributed random variables. • 

Let Q be an I~ I x I~ I matrix given by 
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{

Jl(X) 

Ox.Y = :(X) 
Y = X·x E ~ 

X=Y 

otherwise. 

Theorem 6. {X(t), t ~ 0} is a continuous time Markov chain with infinitesimal generator matrix Q. 

Proof. Let Y E ~. I Y I = k. By lemma 3, we know that, con<litioned only on the greediness of Y, 

W(Y · y)- W(Y) = V(Y)- ['tj(y) + 'tj(y)+l + ... + -r.) 

(4.3) 

for each y E A(Y). Thus, the implication of lemma 5 is that, conditioned on Y being greedy, the set {W(Y · y) -

W(Y): y E A(Y)} is a set of mutually independent, exponentially distributed random variables. 

Let P x.it) = P[X(t) = Y I X(O) =X] for each pair X, Y E ~. 

Corollary 7. Let Y E B. Then F(Y, t) = P[X(t) = Y] = P 
0 

y(t) 

E!:Q.QL. We designed {X(t)} such that sample paths of this process are greedy access chains. Since (E, ~. d"') is 

assumed to be a greedy system, sample paths terminate in greedy optimal basic elements. • 

Thus, we have shown that F(Y, t) is a first passage time distribution of a Markov process with state space~ 

and generator matrix Q. 

Example 6. 

Reconsider the ongoing shortest path example. Suppose we wished to find F(abd, t). We can write the 

Kolmogorov equation P'(t) = P(t)Q as a set of frrst order differential equations which may be solved iteratively. In 

the case of abd, the system is given by 

P 0 .0'(t) = -[Jl(a) + Jl(b)] P 0 .0(t) 

p 0,b'(t) = Jl(b) p 0,0(t)- [Jl(a) + Jl(e)] p 0,b(t) 

P 0,ba'(t) = Jl(a)P 0,b(t)- [Jl(d) + Jl(e)] P 0,ba(t) 

p 0,bad'(t) = Jl(d) p 0,ba(t). 

When the rates are given by: 

Jl(a) = 2; 

Jl(d) = 1; 

this system has solution 

Jl(b) = 1; 

J.!(e) = 3 

Jl(C) = 4; 

F(bad, t) = P 0 , ba/t) = P[W(bad) ~ W(Y) for all Y E B, W(bad) ~ t] 
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- 3t - 5t -4T 
= 1/30 - 1/3 e - 1/5 e + 1/2 e . • 

4.3 Performance Measures 

In this section , we discuss some of the uses of the distribution F(Y, t) in characterizing some measures of 

perfonnance of the stochastic constant access system. While the fundamental equations 

i) * F(Pi, t) = P[W(Y)::; t for some Y e B such that d (Y) =Pi] 

= Ly:d*(Y). pi F(Y, t) for each PiE {d*(Y): Y e B} 

ii) F(t) = P[W(Y)::; t for some Y e B)= LveB F(Y, t) 

iii ) Py = P[W(Y)::; W(Y') for allY' e B)= lim t--+- F(Y, t) 

are obviously valid, there exist more efficient methods for the computation of these distributions that do not require 

full knowledge of F(Y, t) or even generation of every element of~. Historically, studies cited in the introduction 

were focused on the calculation of F(t) for each example problem. Analysts undertaking analysis of some stochastic 

constant access system may have no need for the joint distribution. 

Let P = {P.: P. = d* (Y) for some Y e B}. Let ~P = (~ -B) u P. Consider the modified continuous time 
I I 

Markov chain {Xp(t), t;;::: 0} on state space ~P with transition probability matrix Qp given by 

p 
Q X.Y = QX,Y X, y E ~ - B 

y E B, d*(Y) = P .. 
- I 

Through this simple combining of basic elements of~. we have created a new process for which the absorption 

distribution is P[Xp(t) = P. I Xp(O) = cp] = F(P., t). For the shortest path problem, F(P., t) is the probability that 
I 1 I 

Pi is the shortest path and it's length is less than or equal to t. 

Arguably, the process {Xp(t)} makes {X(t)} obsolete, as we are rarely interested in all of the sample path 

infonnation {X(t)} can provide. More to the point, {Xp(t)} seems to be very inefficient because it has several 

indistinguishable sample paths. The process {Xp(t)} may be streamlined by performing the following procedure on 

the matrix Qp and state space ~p· We call this procedure the lumping procedure for determining structure 

absorption. 

initialize: 

L =P. 
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while there exist X. Z E t;P such chat Qp x. w = Qp z. w = 0 fnr all WE (p- Land Qp X, w = Qp z. w fo r 

all WE L 

for every T E t;P' replace Qp TX with Qp TX + Qp r
2 

remove Z from 'P 
replace L with L v {X E 'p: Qp x.w = 0 for all W E (p- L} 

repeat. 

Note that performing the lumping procedure preserves the upperuiangularity of generator matrices. An 

analogous procedure may be constructed for any set of combined absorbing states, and the procedure extends to 

discrete time Markov chains in the obvious way. The theoretical importance of the lumping procedure is that il 

assures us that the system we choose to analyze has no redundant sample paths. In applications, we oflen use the 

lumping procedure in the abstract, lumping state space elements by some structural argument. In this case, the 

lumping procedure provides sufficient conditions for the validity of such an argument 

The distribution of the weight of the optimal basic element may be derived via a method similar to the one jusl 

described. Suppose we combined all of the basic elements into a single element'¥, defining~'¥=(~- B) u {'¥} 

and {X'f'(t), t ~ 0} with generator Q '¥defined by 

Q '¥ x.Y = Qx,Y if Y e B 

'¥ 
Q X,'P = LyeB QX,Y' 

Then P[X'P(t) = Y I X'f'(O) = 4>] = F(t) is the distribution of the weight of the minimum weight clutter element 

Example 7. 

By lumping the states with identical determining structures and performing the lumping procedure , we greatly 

reduce the size of the state space. This reduces the sate space size from I~ I = 14 to I ~P I = 8. If we are interested 

only in F(t), the distribution of the shortest path, we may further reduce the state space size to I ~\jf I = 5. On larger 

or denser networks, these reductions are more pronounced. 

We need not generate the original state space~ to generate~ or~ For the shortest path problem, nonbasic 

states with identical acessible sets may be lumped to give ~p· The same is true of I ~\If I. Thus, we may perform 

the lumping procedure in the abstract. avoiding the computational work entailed in generating ~· 
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4.4 Performance Measures Based on the Embedded Markov C ha in 

Let (Y", n ;;?: O}be the embedded discrete time Markov chain for {X(t)} . Thus, (Y" } has state space~ and 

transition probability matrix P given by 

-1 
Px.x·x = J.L(x) [J..L(X)] (4 .4) 

for X·x e ~. For the process {Y
0

}, there is exactly one sample path from<!> to each member of B. Thus, for Y e 

B, I Y I = m, we have the solution 

(4.5) 

Some measures easily derivable by summing different subsets of (Py: Y e B} from (Y
0

} are 

ii) P[x e d* (Y G)] for some x e E 

iii) P[ I Y G I = m], m = 1, 2, ... , IE I 

iv) P[ld*(Y)I =i],i= 1,2, .... 1EI. 

The ~rrst measure is the probability that a given determining structure is the minimum weight determining structure. 

For the shortest path example, this is the probability that a given path is shortest The second density gives the 

probability that a given element of Eisa member of the optimal determining structure, this is the probability that a 

given arc is on the shortest path. The third density function gives the distribution of the length of the optimal 

element. This is the number of steps taken by the greedy algorithm in solving the given problem--the distribution 

of the execution time of the algorithm~ Finally, the last density gives the probability that the optimal determining 

structure is of a given length. This density is especially interesting if J.L(x) is the same for each x e E. Each of 

these measures may also be calculated efficiently by lumping absorbing states in the obvious way and performing 

the lumping procedure. 

For any Markov chain (Z
0

, n;;?: 0} with transition probability matrix P with strictly uppertriangular transition 

probability matrix, we solve the system 

p0 = 1; 

Py = Lxe~ Px Px,y 

directly for the set (Py: Y is absorbing in (Zn} }. 

Example 8. 
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Returnin g to the ongoing shortest path example. we have the followin~r table for the basic elementc;: 

Y E B 

ai 

be 

atd 

abe 

and for the directed {s. t) paths: 

path set Pi 

and criticality indices 

{b,e} 

{a, d} 

(a, c, e 1 

arc x 

a 

b 

c 

d 

e 

0.1111 

0.2000 

0.0278 

0.0833 

y E B 

0.1111 

0.3333 

0.0333 

0.1000 

PfPi is the shortest path in Gl 

P[x is on 

0.3833 

0.2833 

0.3333 

the shortest path 

0.6166 

0.3833 

0.3333 

0.2833 

0.7166 

-4.5 Expected Value Analysis 

in Gl 

All of the Markov process's we have considered, regardless of any lumping performed, have uppertriangular 

generator matrices. We present here three simple formulae for the computation of the kth moment of the conditional 

time until absorption of a Markov process with uppertriangular generator matrix. Let Q be the generator of the 

original process {X(t), t;;:::: 0}, let Q '¥and Qp be the generators defined above. Let Y e Band Pie P. Let Ux, 

UxiPi' and UxiY be given by 

Ux = inf{t X'l'(t) E '¥ I X'¥(0) =X} for every X E c'l' 

Ux I pi = inf{ t Xp(t) = pi I X p(O) = X, lim t--+- Xp(t) = Pi} for every X E cp 

Uxly=inf{t:X(t)=Y I X(O)=X,lim 1 __._X(t)=Y} foreveryXe C 
k k k .. 

and defme the moments 'tx(k), 'tx IPi(k), and 'txiy(k) as EUx , EUx iPi , and EUx iY , resp. We seek the quanuues 
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k I * 'tc> I pl(k) = E[W(Y G) d (Y G) = P) 

'tc> I y(k) = E[W(Y G)k I y G = Y] . 

The fust step equation for Ux is given by 
'I' 'I' -1 

Ux = [1 + Lze~'l' Q x.zUzl [-Q x.xl , (4.6) 

with U'P = 0. Using moment generating functions, we derive 

'I' 'I' -1 
'tx(k) = [k'tx(k- 1) + Lze~'l' Q x.z 'tz(k)] [-Q x.xl (4.7) 

for each X E ~'I' and each k = 1, 2, ... , and with t'P(k) = 0. Using 'tx(O) = 1 for all X E ~'I' as a boundary condition, 

we can directly compute {tx(k): X E ~'I'} from {tx(k- 1): X E ~'f'} and Q'I'. In the case of k = 1, equation 4.7 

simplifies to the familiar fust step expected value equations 
'I' -1 'I' 

'tx(l) = [-Q x.xl + Lze~'l' P xz 'tz(l) (4.8) 

where P 'I' x.z = Q 'I' xz [-Q 'I' x.xl -
1 

is the transition probability from X to Z for the process {X'P(t)}. 

With minor modifications to this methodology, we may find 'tx 1 Pi (k) for each X E ~p· Let us define the set 

Cp. = {XE ~P: P[Xp(t) = Pi I Xp(O) = X] > 0}, thus Cp. is the subset of ~P which communicates with Pi. 
I I 

Following 4.7, we find 
p p -1 

'txiPi(k) = [ktxiPi(k- 1) + LzecPi Q xz 'tziPi(k)] [-Q x.xl • (4.9) 

'tp.l p.(k) = 0. Note that, consistent with a fundamental property of Markov process, the expected sojourn time in 
I I 

state X is unaffected by the conditioning. The fonn of 4.7 can also be used to find the expected value tx 1 y(k), 

-1 
'tx ly(k) = [k'tx IY(k- 1) + Lzcy Qxz 'tzipi(k)] [-Qx.xl · (4.10) 

As mentioned before , the original process {X(t), t 2! 0} has a unique sample path to each basic element Let I Y I = 

m, then for each i < m, 4.10 simplifies to 

Thus 

(4.11) 

Example 9. 
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Revisiting our ongoing shortest path example, we calculate 1:0(1) = 0.6833 and 1:
0
(2) = 0.6655. nus g1ves us 

a shortest (s, t) path length variance of0.1986. Note that E[v(a) + v(c) + v(c)] = 1.0833, E[v(a) + v(d)] = 1.500, and 

E(v(b) + v(e)] = 1.333. Thus, if we were to naively estimate the length of the shortest path by the minimum of the 

expected value of the sums of arc lengths, we would overestimate the length by 0.4 , over one standard deviation. 

5.0 EXAMPLES FROM NETWORK OPTIMIZATION 

In this final section, we present examples of constant access systems arising in network optimization. These 

constant access systems may be classified into two groups, those which have determining structures which are paths 

or cutsets in the network at hand, and those which involve the bottleneck objective function. Several of these 

constant access systems have already appeared in the literature as separate results. The purpose of presenting them 

here is to highlight their interrelationship and to build the reader's intuition with familiar structures. The k-trigger 

network exam pie in Section 5.1 and all of the bottleneck objective function examples arc presented in the literature 

for the first time in this paper. We shall illustrate the concepts and procedures described in sections 2 through 4 

using these examples. 

5.1 Stochastic Path and Cutset Optimization 

In this section, we present some constant access systems in which the determining structures are paths or 

cutsets. The examples provided are the shortest path system (Kulkarni [1987]), the PERT system (Kulkarni and 

Adlakha[1986]), the maximum flow on directed planar networks (Kulkarni [1987]) and a new system which we call 

the k-trigger network. 

Example 10. (Shortest Path Systems) 

We have used an instance of the shortest path problem to motivate theory we have presented thus far. In th is 

section, we present this problem in its full generality. Markov processes were first used to analyze shortest paths in 

Markov networks in Kulkarni [1987]. 

Let G = (N, E) be a directed graph. Lets and t be two prespecified nodes in N, and suppose that there exists a 

(u, t) directed path for each u e N. We will speak of a path as a set of directed arcs, the incident nodes being 

implicit. If x e E is given by the ordered pair (k. 1), then we say head(x) = I and tail(x) = k. Let IN(n) denote the set 

(x e E: head(x) = n} and OliT(n) denote the set (x e E: tail(x) = n} for each n e N. 
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Cast in the notation of constant access systems, Dijkstra's algorithm for finding the shonest path in G is given 

by the following algorithm. 

initialize: 

X0 =0 

A(X0) = OUJ(s) 

w(XoJ = 0 

for each x E E, r(x) = v{x) 

i=O 

While /xi n IN(t) I= 0 

xi+l = argminxEA(Xi) r(x) 

w(Xi+l) = w{Xi) + r(x;+) 

A(X;+1) = A(Xi)- {x;+1}- {x E E: no (tail(x) , t) directed path exists in (N, E- X;+ 1) u 0UJ(head(x;+1))} 

i=i+l 

endwhile 

Let~ be the set of strings possibly generated by this algorithm for all nonnegative length functions. Thus, let X be 

a string of arcs, I X I = i and let n = head(xi)· X e ~ if and only if 

i) (N, X) is an s-rooted directed tree~ 

ii) There exists at least one directed (n, t) path P such that none of the nodes implicit in P are incident with 

edges in X. 

iii) Properties i and ii hold for every prefix of X. 

From these properties, it is obvious that X e B if and only if head(~) = t. The set {A(X): X e ~} is the set of 

uniformly directed cutsets (UDCs) in G along with the empty set. 

·rne determining structure of each Y e B is the unique directed (s, t) path contained in (N, Y). For X e ~- B, 

d* (X) is identified by 

d*(X) is the subset of maximum weight of an (s, t) path contained in X, where the maximization is performed over 

those (s, t) paths which are determining structures of basic elements for which X is a prefix. 
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The verification of the constant access property for (A, ~. d*) is a result of Sigal ct. al. [ 1980]. They state that 

the intersection of a (s, t) path with a UDC is always a single element set. From our knowledge of Dijkstra's 

algorithm, we know that an arc x becomes accessible as soon as an arc incident with tail(x) is accessed. It remains 

accessible until it is accessed, or until there remain no (head(x), t) paths which arc not "crossed" by paths of accessed 

arcs. From this intuitive argument, we see that (A,~ . d*) has the interval propen y. 

Because (A, C. d*) is a greedy constant access system, we may apply the results from Section 3 to find {F(Y, 

t), Y e B, t;;:: 0} when G is a network with arcs with independent, exponentially distributed lengths. The shonest 

path system has the propeny that for each Y e B, (N, Y) contains a unique (s, t) path. If we were not interested in 

the actual order of access, we would lose nothing by lumping together strings with identical underl ying sets--in fact, 

the lumping procedure would do this automatically. This reduction in the size of the state space is especially 

dramatic for dense graphs. If we were interested in only the length of the longest path, the lumping procedure would 

combine all states with the same accessible seL Thus, the state space could be replaced by the set of UDCs. 

We may use the method for shonest path problems to analyze maximum flows in undirected planar networks 

with independent, exponentially distributed arc capacities by utilizing the topological dual of the network. It is well 

known that the minimum capacity cutset in a planar network G is identified as the shonest path in the dual network 

G', where the arc lengths in G' are the capacities in G. 

Example 11. (Longest Path Systems) 

Let G = (N, E) be an acyclic directed network. Again lets and t be two prespecified nodes inN, and suppose 

that there exists a (u, t) path for each u e N .. If we add { v(x): x e A}, a set of weights representing durations of the 

tasks represented by the arcs, the resulting network is called a PERT network. In such a network, tail(x) = head(y) 

implies that activity y must be completed before activity x can commence, y has precedence over x. The goal of 

analysis of PERT networks is the identification of the longest path in G and its length. The well-known forward 

sweep algorithm for finding the longest path in G is given by the following 

initialize: 

X0 =0 

A(X0) = OUT(s) 

w(XoJ = 0 

for each x E E, r(x) = v(x) 

i=O 
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While /Xi-E/:;r0 

xi+I = argminxEA(Xj) r(x) 

w(Xi+l) = w(X) + r(xi+l ) 

if /X; n!N(head(x;+1)) / = indegreefhead(xi+I)) then 

A(Xi+I) = A(X;J u OUT(head(xi+I)) 

else 

A(Xi+I) = A(X;) 

i=i+l 

endwhile 

Let C be the set of strings possible generated by nonnegative length functions and let B be the set of basic elements 

of~· This structure is the well-known schedule greedoid, so-named by Korte' and Lovasz [1984]. The determining 

structure of Y e B, I Y I = m, is constructed as follows: 

i) Ym E d*(Y); 

ii) for each y e d* (Y), identify {yi
1

, yi
2

, ••• , Yik: head(yij) = tail(y)). Let i* = maxj=l..k {ij), then yi* e d* (Y). 

Thu~. the last arc accessed which points into tail(ym) is in ct* (Y), the last arc accessed pointing into that arc is in 

d*(Y), and so on. This backward chain ends when an arc y with tail(y) =sis identified as a member of d*(Y), 

forming a (s, t) path. 

Let us verify that (A, C. d*) has the constant access property. Consider X e C- B. A(X) is obviously a 

subset of an (s, t) UDC. Again using the result of Sigal et. al. [1980],.we know A(X) contains at most one arc 

from each (s, t) path. We need to show that this number is exactly one for (s, t) paths in r(X). 

Let Y e B and consider k < I Y I. Let i = max {j ~ k: Yj e d* (Y)), thus yi is the last element of d* (Y) 

accessed at stage k. Let y e d*(Y) with tail(y) = head(yJ Because (Y) =A, and by the defmition of i, y e A(Yi)· 

Thus, A(Y) contains exactly one element of d* (Y). 

The interval property on (A, 0 is straightforward to show, the proof is provided by Korte' and Lovasz [1984], 

who called all greedoids with the interval property "alternative precedence strucnrres," or APS greedoids. The greedy 

algorithm performed on (A, C. d*) is the obvious forward sweep algorithm, see Lawler [1976]. 
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Example 12. (Maximum Flow on Planar Directed Graphs) 

Let G = (N, E) be a directed pianar graph and let nodes s and t be prespecified source and sink nodes. We 

assume that for each u e N, there is at least one (u, t) path in G. Let v:E~9\+ be a function giving the capacity 

values for each of the arcs. 

Let {Cl, C2, ... , Ck} be the set of UDCs in G. The maximum (s, t) flow MF is given by 

MF = Lxe Ci v(x). 

The constant access system constructed must have the property that { d* (X) , X e ~ } = { C1, C2 , •.. , c.J . The 

development of the greedy constant access scheme to find the maximum feasible flow in G , given by Itai and 

Shiloach [1979], depends on the existence of the topmost path TP(E') in the subgraph G' = (N, E') for any subset E' 

C E such that an (s, t) path in G'. The algorithm is given as follows: 

initialize: 

X0 = 0 

w(XoJ = 0 

for each x E E. r(x) = v(x) 

i=O 

While TP(E- Xi) :;e 0 

xi+l = argmir£XETP(E- X) v(x) 

w(Xi+l) = w(X) + r(xi+l) 

for each x E TP(E -Xi) 

r(x) = r(x)- r(xi+l) 

i = i + 1 

endwhile 

Let ~ be the set of strings which this algorithm might generate for all possible choices of nonnegative capacity 

functions v, and let B be the set of basic elements. Let Y
0 

e B. There is no topmost path in G' = (N, E - Y 
0
), but 

Yn E 1P(E- Y
0

_ 1). Thus Y
0 

must contain an (s, t) UDC, and this UDC must contain Yn· Chaining backwards, we 

are able to identify the UDC d* (Y 
0

) by lemma 1. 

This algorithm, known as the path filling algorithm, is shown to produce the maximum flow w(Y G) = MF in 

Itai and Shiloach. {A(X): X e ~} is the set of topmost paths in G. The constant access property holds as a result 

I ci (1 pj I = 1 for each path pj in the set {P 1' p 2• ... , p m} of (s, t) paths. 
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Let us verify the interval property for (E, ~). For each x e Ewe know that once x e A(X), x is on the current 

topmost path, and will remain in the set of accessible arcs until either x is accessed or the topmost path no longer 

includes x. Let k be the smallest index such that x e A(Xk). This implies that Xk contains at least one arc of every 

(s, t) path which involves x. In stage _n, n>k, x cannot be on the topmost path of (N, E - Xn) because Xk c Xn. 

Thus, (E, ~) has the interval property. Recapping, the system (E, ~. d*) has the interval and constant access 

properties, is a greedy system, and { d* (Y): Y e B) is a clutter on E. Hence (E, ~. d*) is a constant access system. 

Let us consider the case where the capacities on the arcs are a set of independent, exponentially distributed 

random variables. The full process on the state space ~ will give us the absorption time distributions F(Y, t) = 

P[X(t) = Y] = P[Y G = Y, w(Y) ~ t], for each Y e B. By lumping the members of Y by their determining 

structures, we may find F(Ci, t), the probability that Ci is the minimum capacity UDC in G and its capacity is less 

than or equal to l This may be accomplished by lumping strings with the same accessible sets, reducing the state 

space size to the number of (s, t) paths. 

The probability that the capacity of a given arc constrains the maximum flow of the network, the criticality of 

the arc, is seen to depend on the flow value. If we wish to find the criticality of a set of arcs K, we suggest a 

lumping of the basic states into two sets. One set contains all basic states for which at least one member of K is a 

member of the determining structure, and is lumped into the single state'¥ 1• The other set contains the complement 

of the first and is labeled '¥ 2• The lumping procedure should then be executed on the remaining state space, as 

suggested in Section 4.3. 

If one were interested in reducing the capacity of the network to to or less by interdicting arcs in the set K, one 

would be interested in I - P[X(to) = '!' 11 = P[K contains at least one critical arc and flow is greater than to] as a 

measure of the importance of the set Kat the flow value lo· Similarly, we can construct the embedded Markov chain 

as given in Section 4.4 to give the probability that a string is a minimum weight string, the probability that a UDC 

is the minimum capacity UDC, and the probability that a set of arcs K contains critical arcs. 

Example 13. (K-trigger Networks) 

Consider a directed acyclic network G = (N, E) with arc length function v:E ~ 9{+. In this problem 

formulation, it is intuitive to regard the arcs of E as activities as in PERT formulations. Suppose that each node n 

e N has a requirement constant len so that activities emanating from n cannot commence until len activities pointing 

into n have completed. Suppose we are given prespecified nodes sand l Assume that indegree(s) = 0. We are 

interested in the time of completion of the ktth arc in IN(t) to complete. 
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For the PERT formulation , ~= indegree(n) for each n E N, no activity in OUT(n) can stan until all acuvities 

in IN(n) are complete. Thus, the time when the last arc completes is the length of the longest path in G. If k
0 
= 1 

for all n e N, the time of completion of the first arc in IN(t) is the length of the shortest path in G. Thus, This 

problem which we name the k-trigger network problem generalizes both shortest and longest path problems on 

directed graphs. 

The k-trigger network model is also useful in modelling the assembly of information products such as tracking 

information assembled by an air control system. Each of the activities represents some data collection task or some 

ambiguity resolution activity. Each activity must have several independent inputs which it uses to produce a 

coherent product or conduct some data collection requiring an initial solution. These activities may also represent 

the command task, giving permission for subsequent activities to begin. 

We may flnd the completion time of the Is th activity in IN(t) by the following greedy algorithm 

initialize: 

X0 =0 

w(XoJ = 0 

for all x E E, r(x) = v(x) 

A(X0) = OUT(s) 

i = 0 

While /X; u IN(t) I < kt 

xi+I = argminxEA(X.) r(x) 

w(Xi+I) = w(Xi) + r(xi+I) 

for all x E A(X;) 

r(x) = r(x)- r(xi+I) 

if /xi+J u!N(head(x)) / = khuul(xJ then 

A(Xi+I) = A(Xi)- IN(head(x)) u OUT(head(x))- {x E E: no (tail(x). t) path exists in 

(N, E -Xi+I) u0UT(head(x;+1))} 

else 

A(Xi+I) = A(Xi)- {xi+d- {x E E: no (tail(x). t) path exists in (N, E- Xi+ I) u 

OUT(head(xi+I))} 

i=i+l 

endwhile 
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Let~ be Lhe set of strings generated over all length functions v and let B be the set of basic strings. Clearly, if 

this algorithm generates the basic string Y
0

, we know Lhat Yn is the ~th arc in IN(t) to complete, thus clearly Yn e 

d*(Y
0
). Furthermore, recall that j(y

0
) is the minimum j such that Yn E A(Y). From the algorithm, we see that 

head(Yj(yJ) = tail(y0 ), and Yj(yn) is the ~(yn)th arc to be accessed in IN(tail(y0 )). Hence, it must be on the longest path 

from s to tail(y 
0

) in the sub graph (N, Y 0)~ Thus, we can chain backwards to identify d*(Y 
0

) as the longest (s, t) path 

in the sub graph (N, Y 
0
). The length of this path is the shortest completion time of the assembly process. 

Because d* (Y 
0

) is always an (s, t) path, we have that { d* (Y): Y E B} is a clutter on E. The interval property 

holds because an arc x becomes accessible when ktail(x) arcs in IN(tail(x)) have been accessed and remains accessible 

until it is accessed or until khead(x) arcs in IN(head(x)) are accessed. In the latter event, x remains inaccessible 

thereafter. 

The constant access property is more difficult to verify. One must recognize that given that~ is generated by 

the above algorithm, A(X) is a partial UDC. One must show that any (s, t) path P1 for which I A(X) n P1 I = 0 

is dominated in length by at least one path P2 for which I A(X) n P2l = 1. P1 will never be the longest (s, t) path 

in (N, Y) for any Y ::::> ~. Y E B. Hence, P1 e r(X). Thus, the constant access property holds for this system. 

The system has the three properties necessary for it to be a constant access system. 

We can determine the probability that a given arc is critical, a member of d* (Y G), by using the embedded 

Markov chain. We can derive interesting performance measures such as the distribution of the total time of 

assembly, the probability that a given arc is critical given the assembly time is less than to• and the probability that 

a set of arcs contains a critical arc given that the assembly time exceeds to by using the lumping procedure to alter 

the matrix Q. 

5.2 Systems with Bottleneck Objective Functions 

In this section, we discuss three constant access systems which use the bottleneck objective function. The 

bottleneck objective function, first specified by Edmonds and Fulkerson [1970], is used to fmd the structure with the 

lowest cost where the cost of a structure is the weight of the maximum weight element in the structure. In this 

section, we present examples where the structures are cutsets, paths and trees. These are given in network reliability, 

bottleneck shortest path, and bottleneck minimum weight tree. 

Example 14. (Network Reliability) 

Consider a network G = (N, E) with undirected arcs whose usability is perishable. For instance, consider a 

communications network with links which fail with time. The network contains a set S of sender nodes and a 
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disjoint set T of terminals. We are imcrested in the time it takes for the network to fail to the point where there 15 

no path of usable arcs from some member of S to some member of T, that is, the time that S and T are no longer 

completely connected. Note that this problem has (s, t) and (s, K) reliabili ty as specia.I cases. 

Let {C1, C2, ..• , Ck} = C be the set of (S, 1) cutsets, and let v:E ~ 9\+ be a function giving the lifelength of 

each arc. The quantity of interest is the time of failure TF of the longest lived arc in the shortest lived cutset, 

TF = mine;.ec m~eC;. v(x). 

TF is a well-known instance of the bottleneck objective function on the set C. The obvious algorithm for finding 

TF is given as 

initialize: 

X0 =0 

w(XoJ = 0 

for all x E E, r(x) = v(x) 

i = 0 

While SandT are completely connected in (N, E- Xj ) 

xi+l = argminx.e£-Xi r(x) 

w(Xi+l) = w(X) + r(xi+l) 

for all X E E - xi 

r(x) = r(x)- r(xi+ l ) 

i=i+l 

endwhile 

At each stage, w(X) = v(x), thus if the algorithm terminates in n steps, xn is the longest lived arc in the 

shortest lived cutset, and w(Xn) = v(xn) is the time of disconnection. Let ~ be the set of strings generated by this 

algorithm over all nonnegative failure time functions. 

The system (E, ~. d*) has determining structures which are singleton sets, d*(X) = {xi}. Thus {d*(Y): Y e B) 

= E, thus { d* (Y): Y e B} is a clutter on the set E. For each ~ e ~. 



thus the constant access property is satisfied , I d* (Y 
0

) u A(X) I = I y n I = 1 for each Y n such that Xi c Y n· The 

interval property holds because every arc is accessible until it is accessed or the algorithm terminates. Thus, (E, C. 

d*) is a constant access system. 

Clearly, the network reliability problem for the case where the lifelengths are independent exponentials is 

solvable using Markov processes. By appropriate lumping of basic elements, we may determine for each time of 

failure the probability that a given cutset is longest lived and the probability that a given arc is the arc which 

determines the lifelength of the system. The embedded Markov chain may be used to fmd these quantities without 

regard for failure time. 

Example 15. (Bottleneck Shortest Path) 

We now turn attention to a system which finds the minimum weight path where path weights are given by the 

longest arc in the path. Let {PI' P2, •.• , P
0

} = P be the set of (s, t) paths in G. The bottleneck (s, t) path problem 

may be stated as: find the (s, t) path with the shortest longest arc. TI1at is, fmd Pi which minimizes 

BP = minP·eP maxxeP· v(x). 
I I 

The following greedy algorithm finds the minimizing path and the optimal value BP. 

initialize: 

X0 =0 

w(XoJ=O 

for all.x E £, r(.x) = v(.x) 

i = 0 

While Xi does not contain an (s, t) path 

.xi+l = argmin~eE-X· r(.x) 
' 

w(Xi+l) = w(Xi) + r(.xi+l) 

for all.x E E- Xi 

r(.x) = r(.x)- r(.xi+l) 

i=i+l 

endwhile. 

BP is given by w(Y 0 ). Let C be the set of all strings generated by this algorithm. As with the reliability 

problem, the interval property holds because each arc is accessible at each stage prior to termination. The 
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determining structure of each Y me B is Yn ' and A(X) = E- X
1 

for all nonbasic Xi. Hence the constant access 

property must hold. Obviously { d* (Y): Y e B} = E, a clutter on itself. 

Thus, (E, ~. d*) is a constant access system. The methodology in sections 4.3 through 4.5 may be used to 

find the distribution of BP, the moments_ of BP, and the probability that a given arc is the arc determining BP. Note 

that the minimizing path is not unique, and every (s, t) path in (N, X) is equall y qualified to be the minimum 

weight path. 

Example 16. (Bottleneck Spanning Tree) 

Let {T 1, T 2 , ••• , Tn} be the set of arc sets of spanning trees in the undirected network G = (N, E). The 

bottleneck spanning tree problem, very similar to the bottleneck path problem, is to fmd the spanning tree with the 

shortest longest arc, 

BST = minTiE T maxxe Ti v(x). 

The greedy algorithm to solve the bottleneck spanning tree problem is identical to the bottleneck path problem, 

except that we terminate the algorithm when Xi contains a spanning tree. The determining structures are singleton 

arc sets, and the interval and constant access properties hold. Hence, the system (E, ~. d* ) is a constant access 

system. 

6.0 CONCLUSION 

In this work, we have constructed a new structural framework for randomly weighted network optimization 

called a constant access system. If a structure has the properties we have given here, we may find the joint 

distribution of the minimum weight basis element and its weight by calculating the absorption time distribution of a 

Markov process. We provide the construction of this Markov process, and demonstrate expansively how we may 

exploit the structure of the Markov process to derive measures of stochastic performance for the general problem. 

We have established that the mechanism of transition in a Markov process is to greedily minimize the sojourn 

time in every state. This fortunate property allowed us to model the execution path of the greedy algorithm as the 

sample path in a Markov process. 
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APPENDIX A. 

In this appendix we present the proof to lemma 2. 

Lemma 2. Let (E, ~. d*) be a greedy constant access system. Let X be a greedily generated string, I X I = n. 

* Then for each x E A(X), x E d (X·x). -

Proof. For each i, defme the following two subsets of r(Y · y). Let D = {J E r(Y · y) such that 

~E JnX. x v(z) = maxJE r(X. x) LzE JnX. x v(z) 

Thus, d*(X. x) = J n X. X for any J E D. Let K = {J E rex. x): X E J}. Let Dk = {J E r(Xk) such that 

LzE JnXk v(z) = maxJE nx.t> LzE JfiX}c v(z) 

Thus, d*(Xk) = J n xk for any J E Dk. Let Kk = {J E rcxk): X E J) We will show that if Kk c Dk f-ork= 0, 

1, ... , i, then K C D. This will prove the lemma by induction. 

Let i = 0. In this case the proposition holds trivially since K = D = { d* (Z): Z E B). Thus, suppose that fork 

= 0, 1, ... , i, K k C Dk. In order to show that this implies that K C D, we need to treat two cases: j(x) = i, and 

j(x) < i. 

~: j(x) = i, thus x is accessible only after Xi has been accessed. Let K E K. Then lemma 1 gives us that Xi E 

K so K E Ki. Thus, by induction hypothesis, K E Di. We must show that K E D. 

Let J E D. Then 

= Lze KnX. x v(z). (A.1) 

Thus, KED. 

~: j(x) = h < i. Let K E K. Let J E D and assume that K e D. Thus 

LzE KnX · x v(z) < LzE JnX · x v(z). (A.2) 

The constant access property guarantees that Xi e K, and the induction hypothesis guarantees that Xi E Ji. 

Hence 

LzE ~-1 v(z) + v(x) = ~E KnX. x v(z) 

< ~E 1~.1 v(z) = LzE JnX~_1 v(z) + v(xi) , 
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the inequality resulting from equation A.2. Note that {;lCi , x} C A(Xi- 1). It is strai ghtforward to show that if 

inequality A.3 holds, then G(Xi-1) :t: Xi · In fact, w(Xi- 1 · xi) > w(Xi-1 · x), and both xi and x were accessible at 

stage i- 1. This shows that for case 2, if we assume K E K and K e D, we can derive a contradiction. 

Thus, we have shown for both cases that K C D. The lemma follows directly. 
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